Solution of the dark matter riddle within standard model physics: from black holes, galaxies and clusters to cosmology

Author:

Nieuwenhuizen Theodorus Maria

Abstract

It is postulated that the energy density of the (quantum) vacuum acts firstly as dark energy and secondly as a part of dark matter. Assisted by electric fields arising from a small charge mismatch in the cosmic plasma, it can condense on mass concentrations. No longer participating in the cosmic expansion, this constitutes “electro-aether-energy” (EAE), “electro-zero-point-energy” or “electro-vacuum-energy”, which solves the dark matter riddle without new physics. A radial electric field of 1 kV/m is predicted in the Galaxy. For proper electric fields, EAE can cover the results deduced with MOND. An instability allows a speedy filling of dark matter cores. Hydrostatic equilibrium in galaxy clusters is obeyed. Flowing in aether energy of explains why black holes become supermassive, do not have mass gaps and overcome the final parsec problem. Rupture of charged clouds reduces, e.g., the primordial baryon cloud to the cosmic web. The large coherence scale of the electric field acts as a scaffold for gentle galaxy formation and their vast polar structures. In galaxy merging and bars, there occurs no dynamical friction. At cosmological scales, EAE acts as pressureless dark matter. Its amount increases in time, which likely solves the Hubble tension by its late time physics. A big crunch can occur. Of the large cosmological constant injected at the Big Bang, a small part kept that form, without fine-tuning.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3