The basic solar wind speed distribution and its sunspot cycle variations

Author:

Akasofu Syun-Ichi,Lee Lou-Chuang

Abstract

In this paper, it is suggested that the latitudinal solar wind speed observed by the Ulysses spacecraft during the lowest solar activity (when both the ecliptic and magnetic equators coincide) may be identified as the basic speed distribution throughout the solar cycle. We demonstrate this suggestion by rotating this particular Ulysses distribution counterclockwise up to 70° in accordance with the rotation of the equivalent dipole axis during active periods of the cycle. The corresponding magnetic equator in the Carrington map latitude-longitude (27 days) becomes quasi-sinusoidal with respect to the ecliptic equator. The quasi-sinusoidal magnetic equator on the Carrington map and its modification associated with the degree of sunspot activities can explain the two high speed peaks (750–800 km/s) and the two lowest speed (350 km/s) during 27-day solar rotation periods, most clearly recognizable after the sunspot peak period. Thus, it may be not necessary to consider coronal holes or open regions as the source of high speed streams. In fact, this particular (lowest solar activity) Ulysses distribution may represent the speed distribution pattern by the basic generation process of the solar wind itself.

Funder

University of Alaska Fairbanks

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference22 articles.

1. Quantitative forecasting of the 27-day recurrent magnetic activity;Akasofu;Planet. Space Sci.,1988

2. A new morphology of solar activity and recurrent geomagnetic disturbances: The late-declining phase of the sunspot cycle;Akasofu;Space Sci. Rev.,2005

3. A new understanding of why the aurora has explosive characteristics;Akasofu;Mon. Not. Roy. Astron.,2023

4. Coronal holes, living rev. Solar Phys.,6, 3;Cranmer;Speed Dur. Minim. between Cycles 23 24 Sol. phys,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3