The evolution of a spot–spot-type solar active region which produced a major solar eruption

Author:

Liu Lijuan

Abstract

Solar active regions are the main sources of large solar flares and coronal mass ejections. It is found that the active regions producing large eruptions usually show compact, highly sheared polarity inversion lines. A scenario named “collisional shearing” is proposed to explain the formation of this type of polarity inversion lines and the subsequent eruptions, which stresses the role of collision and shearing induced by relative motions of different bipoles in their emergence. However, in observations, if not considering the evolution stage of the active regions, about one-third of the active regions that produce large solar eruptions govern a spot–spot-type configuration. In this work, we studied the full evolution of an emerging AR, which showed a spot–spot-type configuration when producing a major eruption, to explore the possible evolution gap between the “collisional shearing” process in flux emergence and the formation of the spot–spot-type, eruption-producing AR. We tracked the AR from the very beginning of its emergence until it produced the first major eruption. It was found that the AR was formed through three bipoles emerging sequentially. The bipoles were arranged in parallel on the photosphere, shown as two clusters of sunspots with opposite-sign polarities, so that the AR exhibited an overall large bipole configuration. In the fast emergence phase of the AR, the shearing gradually occurred due to the proper motions of the polarities, but no significant collision occurred due to the parallel arrangement of the bipoles nor did the large eruption occur. After the fast emergence phase, one large positive polarity started to show signs of decay. Its dispersion led to the collision to a negative polarity which belonged to another bipole. A huge hot channel spanning the entire AR was formed through precursor flarings around the collision region. The hot channel erupted later, accompanied by an M7.3-class flare. The results suggest that in the spot–spot-type AR, along with the shearing induced by the proper motions of the polarities, a decay process may lead to the collision of the polarities, driving the subsequent eruptions.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3