The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules

Author:

Mifsud Duncan V.,Hailey Perry A.,Traspas Muiña Alejandra,Auriacombe Olivier,Mason Nigel J.,Ioppolo Sergio

Abstract

Stellar systems are often formed through the collapse of dense molecular clouds which, in turn, return copious amounts of atomic and molecular material to the interstellar medium. An in-depth understanding of chemical evolution during this cyclic interaction between the stars and the interstellar medium is at the heart of astrochemistry. Systematic chemical composition changes as interstellar clouds evolve from the diffuse stage to dense, quiescent molecular clouds to star-forming regions and proto-planetary disks further enrich the molecular diversity leading to the evolution of ever more complex molecules. In particular, the icy mantles formed on interstellar dust grains and their irradiation are thought to be the origin of many of the observed molecules, including those that are deemed to be “prebiotic”; that is those molecules necessary for the origin of life. This review will discuss both observational (e.g., ALMA, SOFIA, Herschel) and laboratory investigations using terahertz and far-IR (THz/F-IR) spectroscopy, as well as centimeter and millimeter spectroscopies, and the role that they play in contributing to our understanding of the formation of prebiotic molecules. Mid-IR spectroscopy has typically been the primary tool used in laboratory studies, particularly those concerned with interstellar ice analogues. However, THz/F-IR spectroscopy offers an additional and complementary approach in that it provides the ability to investigate intermolecular interactions compared to the intramolecular modes available in the mid-IR. THz/F-IR spectroscopy is still somewhat under-utilized, but with the additional capability it brings, its popularity is likely to significantly increase in the near future. This review will discuss the strengths and limitations of such methods, and will also provide some suggestions on future research areas that should be pursued in the coming decade exploiting both space-borne and laboratory facilities.

Funder

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference242 articles.

1. Complementary and Emerging Techniques for Astrophysical Ices Processed in the Laboratory;Allodi;Space Sci. Rev.,2013

2. The Structure and Dynamics of Carbon Dioxide and Water Containing Ices Investigated via THz and Mid-IR Spectroscopy;Allodi;Phys. Chem. Chem. Phys.,2014

3. Extraterrestrial Prebiotic Molecules: photochemistry vs. Radiation Chemistry of Interstellar Ices;Arumainayagam;Chem. Soc. Rev.,2019

4. Terahertz Desorption Emission Spectroscopy (THz DES) – ALMA in the Lab;Auriacombe;Paper presented Am. Astronomical Soc. Meet.,2016

5. Desorption Emission Spectroscopy Using THz Radiometry (THz DES);Auriacombe;IET Conf. Proc.,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3