Influence of Martian Radiation-like Conditions on the Growth of Secale cereale and Lepidium sativum

Author:

Tack N.,Wamelink G.W.W.,Denkova A.G.,Schouwenburg M.,Hilhorst H.,Wolterbeek H.T.,Goedhart P.W.

Abstract

The Martian surface is constantly exposed to a high dose of cosmic radiation consisting of highly energetic particles and multiple types of ionizing radiation. The dose can increase temporarily by a factor of 50 through the occurrence of highly energetic solar flares. This may affect crop growth in greenhouses on the Martian surface possibly making settlement of humans more complicated. Shielding crops from radiation might be done at the expense of lighting efficiency. However, the most energy-efficient cultivation may be achieved through the use of natural daylight with the addition of LED lights. The goal of our research was to investigate whether Martian radiation, both the constant and the solar flares events, affects plant growth of two crop species, rye and garden cress. The levels of radiation received on the surface of Mars, simulated with an equivalent dose of 60Co γ-photons, had a significant negative effect on the growth of the two crop species. Although germination percentages were not affected by radiation, biomass growth was significantly decreased by 32% for cress and 48% for rye during the first 4 weeks after germination. Part of the biomass differences may be due to differences in temperature between radiation and control treatment, however it cannot explain the whole difference between the treatment and control. Coloring of leaves, necrosis and brown parts, was observed as well. Temporary increases in ionizing radiation dose at different development stages of the plants did not significantly influence the final dry weight of the crops.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference35 articles.

1. Active oxygen species and antioxidants in seed biology;Bailly;Seed Sci. Res.,2004

2. Space radiation dosimetry in low-Earth orbit and beyond;Benton;Nucl. Instr. Methods Phys. Res. Section B: Beam Interactions Mater. Atoms,2001

3. Photosynthetic response and adaptation to temperature in higher plants;Berry;Annu. Rev. Plant Physiol.,1980

4. The Effects of X-rays, 2-Mev Electrons, Thermal Neutrons, and Fast Neutrons on Dormant Seeds of Barley;Caldecott;Ann. N.Y Acad. Sci.,1955

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3