Testing and Validating Two Morphological Flare Predictors by Logistic Regression Machine Learning

Author:

Korsós M. B.,Erdélyi R.,Liu J.,Morgan H.

Abstract

Whilst the most dynamic solar active regions (ARs) are known to flare frequently, predicting the occurrence of individual flares and their magnitude, is very much a developing field with strong potentials for machine learning applications. The present work is based on a method which is developed to define numerical measures of the mixed states of ARs with opposite polarities. The method yields compelling evidence for the assumed connection between the level of mixed states of a given AR and the level of the solar eruptive probability of this AR by employing two morphological parameters: 1) the separation parameter Slf and 2) the sum of the horizontal magnetic gradient GS. In this work, we study the efficiency of Slf and GS as flare predictors on a representative sample of ARs, based on the SOHO/MDI-Debrecen Data (SDD) and the SDO/HMI - Debrecen Data (HMIDD) sunspot catalogues. In particular, we investigate about 1,000 ARs in order to test and validate the joint prediction capabilities of the two morphological parameters by applying the logistic regression machine learning method. Here, we confirm that the two parameters with their threshold values are, when applied together, good complementary predictors. Furthermore, the prediction probability of these predictor parameters is given at least 70% a day before.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MeLoDicA AI- Machine Learning Based Detection of Asthma via Vocal Audio Analysis;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

2. Prediction of solar energetic events impacting space weather conditions;Advances in Space Research;2024-02

3. A Bayesian approach to the drag-based modelling of ICMEs;Journal of Space Weather and Space Climate;2024

4. Analysis of SEP Events and Their Possible Precursors Based on the GSEP Catalog;The Astrophysical Journal Supplement Series;2023-08-01

5. Exploring TeV Candidates of Fermi Blazars through Machine Learning;The Astrophysical Journal;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3