Neutral winds from mesosphere to thermosphere—past, present, and future outlook

Author:

Dhadly Manbharat,Sassi Fabrizio,Emmert John,Drob Douglas,Conde Mark,Wu Qian,Makela Jonathan,Budzien Scott,Nicholas Andy

Abstract

The Earth’s upper atmosphere (85–550 km) is the nearest region of geospace and is highly dynamic in nature. Neutral winds impact a large portion of the dynamics in this region. They play a critical role in determining the state of the ionosphere-thermosphere system at almost all latitudes and altitudes. Their influences range from wave breaking/dissipation in the mesosphere and lower thermosphere to global redistribution of energy and momentum deposited at high latitudes by the magnetosphere. Despite their known importance, global geospace neutral winds have remained one of the least sampled state parameters of the Earth’s upper atmosphere and are still poorly characterized even after multiple decades of observations. This paper presents an overview of historical neutral wind measurements and the critical need for their global height-resolved measurements. Some satellite missions are still operational and deliver valuable information on the contribution of neutral winds in global atmospheric dynamics. However, many significant gaps remain in their global monitoring, and our current understanding of the drivers of neutral winds is incomplete. We discuss the challenges posed by these measurement gaps in understanding geospace physics and weather. Further, we propose some wind observation solutions, including the simultaneous operations of upcoming NASA DYNAMIC and GDC missions as well as support for the development of ground-based observing methodologies, that will lead to fundamental advances in geospace science and address humanity’s emerging space needs.

Funder

National Aeronautics and Space Administration

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Assessment of the Distribution of Joule Heating in Altitude as Estimated in TIE‐GCM and EISCAT Over One Solar Cycle;Journal of Geophysical Research: Space Physics;2023-12

2. The Lower Thermospheric Winter‐To‐Summer Meridional Circulation: 2. Impact on Atomic Oxygen;Journal of Geophysical Research: Space Physics;2023-11

3. OSAS-B: a 4.7-THz Heterodyne Spectrometer for Atomic Oxygen in the Mesosphere and Lower Thermosphere;2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz);2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3