ARMA model development and analysis for global temperature uncertainty

Author:

Hasan Mahmud,Wathodkar Gauree,Muia Mathias

Abstract

Temperature uncertainty models for land and sea surfaces can be developed based on statistical methods. In this paper, we developed a novel time-series temperature uncertainty model, which is the autoregressive moving average (ARMA) (1,1) model. The model was developed for an observed annual mean temperature anomaly X(t), which is a combination of a true (latent) global anomaly Y(t) for a year (t) and normal variable w(t). The uncertainty is taken as the variance of w(t), which was divided into land surface temperature (LST) uncertainty, sea surface temperature (SST) uncertainty, and the corresponding source of uncertainty. The ARMA model was analyzed and compared with autoregressive (AR) and autoregressive integrated moving average (ARIMA) for the data obtained from the NASA Goddard Institute for Space Studies Surface Temperature (GISTEMP) Analysis. The statistical analysis of the autocorrelation function (ACF), partial autocorrelation function (PACF), normal quantile–quantile (normal Q-Q) plot, density of the residuals, and variance of normal variable w(t) shows that ARMA (1,1) fits better than AR (1) and ARIMA (1, d, 1) for d = 1, 2.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference19 articles.

1. ICOADS release 3.0: A major update to the historical marine climate record;Freeman;ICOADS release 3.0 A major update Hist. Mar. Clim. Rec. Int. J. Climatol.,2016

2. Global trends of measured surface air temperature;Hansen;J. Geophys. Res.,1987

3. Global surface temperature change;Hansen;Rev. Geophys.,2010

4. Climate simulations for 1880–2003 with GISS modelE;Hansen;Clim. Dyn.,2007

5. On development of algorithm to design layout in facility layout planning problems;Hasan;J. Phys. Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3