Statistical geoeffectiveness of solar-interplanetary disturbance events of type II radio bursts and CMEs/shocks

Author:

Yan Jingye,Yu Quanyingqi

Abstract

Understanding and predicting the geoeffectiveness of solar activity on Earth is crucial for space weather. Therefore, predicting the impact of coronal mass ejections (CMEs) and their associated interplanetary (IP) shocks on Earth is essential. Observations of CMEs near the Sun can be used for these prediction and to study their propagation and evolution in IP space. Commonly used international models do not accurately predict whether and when IP shocks would reach Earth, thus failing to meet the demands of space weather forecasting. This study investigated the geoeffectiveness of solar-IP disturbance events, focusing on type II radio bursts from 1996 to 2019 (solar cycles 23 and 24). The study results showed that during this period, Wind/WAVES detected 623 type II bursts and 541 IP shocks at the L1 point, where 181 type II bursts were associated with L1 shocks. Approximately 29% of the IP shocks associated with type II bursts reached Earth, and approximately 34% of the IP shocks at the L1 point were accompanied by these bursts. IP type II radio bursts and their cutoff frequencies can serve as indicators of the geoeffectiveness of CMEs towards Earth. IP shocks accompanied by type II radio bursts cause stronger geomagnetic responses than those without the associated type II radio bursts. Lower cutoff frequencies of type II radio bursts increase the probability that the corresponding shocks reaching Earth, intensifying the geomagnetic response of the shock. Consequently, the presence of IP type II radio bursts and can serve as indicators of geoeffectiveness of the Earth-directed CMEs. Further, they help improve the accuracy of forecasting the geoeffectiveness of CME/shock events towards Earth.

Publisher

Frontiers Media SA

Reference27 articles.

1. Magnetic loop behind an interplanetary shock: voyager, helios, and imp 8 observations;Burlaga;J. Geophys. Res. Space Phys.,1981

2. Interplanetary coronal mass ejections in the near-earth solar wind during 1996–2002;Cane;J. Geophys. Res. Space Phys.,2003

3. What is a geomagnetic storm?;Gonzalez;J. Geophys. Res. Space Phys.,1994

4. Type ii radio bursts and energetic solar eruptions;Gopalswamy;J. Geophys. Res. Space Phys.,2005

5. Major solar flares without coronal mass ejections;Gopalswamy;Proc. Int. Astronomical Union

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3