Source of phosphine on Venus—An unsolved problem

Author:

Bains William,Seager Sara,Clements David L.,Greaves Jane S.,Rimmer Paul B.,Petkowski Janusz J.

Abstract

The tentative detection of ppb levels of phosphine (PH3) in the clouds of Venus was extremely surprising, as this reduced gas was not expected to be a component of Venus’ oxidized atmosphere. Despite potential confirmation in legacy Pioneer Venus mass spectrometry data, the detection remains controversial. Here we review the potential production of phosphine by gas reactions, surface and sub-surface geochemistry, photochemistry, and other nonequilibrium processes. None of these potential phosphine production pathways is sufficient to explain the presence of phosphine in Venus atmosphere at near the observed abundance. The source of atmospheric PH3 could be unknown geo- or photochemistry, which would imply that the consensus on Venus’ chemistry is significantly incomplete. An even more extreme possibility is that a strictly aerial microbial biosphere produces PH3. The detection of phosphine adds to the complexity of chemical processes in the Venusian environment and motivates better quantitation of the gas phase chemistry of phosphorus species and in situ follow-up sampling missions to Venus.

Publisher

Frontiers Media SA

Reference67 articles.

1. Improvements in or relating to the purification of acetylene Air Liquide Paris, FranceAIR LIQUIDE1963

2. Complications in the ALMA detection of phosphine at Venus;Akins;Astrophysical J.,2021

3. Iron phosphide, Fe3P;American Elements,2023

4. Large uncertainties in the thermodynamics of phosphorus (III) oxide (P4O6) have significant implications for phosphorus species in planetary atmospheres;Bains;ACS Earth Space Chem.,2023

5. Production of ammonia makes venusian clouds habitable and explains observed cloud-level chemical anomalies;Bains;Proc. Natl. Acad. Sci.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3