Resolving Space Plasma Species With Electrostatic Analyzers

Author:

Nicolaou Georgios,Haythornthwaite Richard P.,Coates Andrew J.

Abstract

Electrostatic analyzers resolve the energy-per-charge distributions of charged plasma particles. Some space plasma instruments use electrostatic analyzers among other units, such as aperture deflectors and position sensitive detectors, in order to resolve the three-dimensional energy (velocity) distribution functions of plasma particles. When these instruments do not comprise a mass analyzer unit, different species can be resolved only if there are measurable differences in their energy-per-charge distributions. This study examines the ability of single electrostatic analyzer systems in resolving co-moving plasma species with different mass-per-charge ratios. We consider examples of static plasma consisting of two species of heavy negative ions measured by a typical electrostatic analyzer design, similar to the electron spectrometer on board Cassini spacecraft. We demonstrate an appropriate modeling technique to simulate the basic features of the instrument response in the specific plasma conditions and we quantify its ability to resolve the key species as a function of the spacecraft speed and the plasma temperature. We show that for the parameter range we examine, the mass resolution increases with increasing spacecraft speed and decreasing plasma temperature. We also demonstrate how our model can analyze real measurements and drive future instrument designs.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3