Surface ozone pollution in China: Trends, exposure risks, and drivers

Author:

He Chao,Wu Qian,Li Bin,Liu Jianhua,Gong Xi,Zhang Lu

Abstract

IntroductionWithin the context of the yearly improvement of particulate matter (PM) pollution in Chinese cities, Surface ozone (O3) concentrations are increasing instead of decreasing and are becoming the second most important air pollutant after PM. Long-term exposure to high concentrations of O3 can have adverse effects on human health. In-depth investigation of the spatiotemporal patterns, exposure risks, and drivers of O3 is relevant for assessing the future health burden of O3 pollution and implementing air pollution control policies in China.MethodsBased on high-resolution O3 concentration reanalysis data, we investigated the spatial and temporal patterns, population exposure risks, and dominant drivers of O3 pollution in China from 2013 to 2018 utilizing trend analysis methods, spatial clustering models, exposure-response functions, and multi-scale geographically weighted regression models (MGWR).ResultsThe results show that the annual average O3 concentration in China increased significantly at a rate of 1.84 μg/m3/year from 2013 to 2018 (160 μg/m3) in China increased from 1.2% in 2013 to 28.9% in 2018, and over 20,000 people suffered premature death from respiratory diseases attributed to O3 exposure each year. Thus, the sustained increase in O3 concentrations in China is an important factor contributing to the increasing threat to human health. Furthermore, the results of spatial regression models indicate that population, the share of secondary industry in GDP, NOx emissions, temperature, average wind speed, and relative humidity are important determinants of O3 concentration variation and significant spatial differences are observed.DiscussionThe spatial differences of drivers result in the spatial heterogeneity of O3 concentration and exposure risks in China. Therefore, the O3 control policies adapted to various regions should be formulated in the future O3 regulation process in China.

Funder

Natural Science Foundation of Hubei Province

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3