Prediction models and associated factors on the fertility behaviors of the floating population in China

Author:

Zhu Xiaoxia,Zhu Zhixin,Gu Lanfang,Chen Liang,Zhan Yancen,Li Xiuyang,Huang Cheng,Xu Jiangang,Li Jie

Abstract

The floating population has been growing rapidly in China, and their fertility behaviors do affect urban management and development. Based on the data set of the China Migrants Dynamic Survey in 2016, the logistic regression model and multiple linear regression model were used to explore the related factors of fertility behaviors among the floating populace. The artificial neural network model, the naive Bayes model, and the logistic regression model were used for prediction. The findings showed that age, gender, ethnic, household registration, education level, occupation, duration of residence, scope of migration, housing, economic conditions, and health services all affected the reproductive behavior of the floating population. Among them, the improvement duration of post-migration residence and family economic conditions positively impacted their fertility behavior. Non-agricultural new industry workers with college degrees or above living in first-tier cities were less likely to have children and more likely to delay childbearing. Among the prediction models, both the artificial neural network model and logistic regression model had better prediction effects. Improving the employment and income of new industry workers, and introducing preferential housing policies might improve their probability of bearing children. The artificial neural network and logistic regression model could predict individual fertility behavior and provide a scientific basis for the urban population management.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3