Author:
Zhu Xiaoxia,Zhu Zhixin,Gu Lanfang,Chen Liang,Zhan Yancen,Li Xiuyang,Huang Cheng,Xu Jiangang,Li Jie
Abstract
The floating population has been growing rapidly in China, and their fertility behaviors do affect urban management and development. Based on the data set of the China Migrants Dynamic Survey in 2016, the logistic regression model and multiple linear regression model were used to explore the related factors of fertility behaviors among the floating populace. The artificial neural network model, the naive Bayes model, and the logistic regression model were used for prediction. The findings showed that age, gender, ethnic, household registration, education level, occupation, duration of residence, scope of migration, housing, economic conditions, and health services all affected the reproductive behavior of the floating population. Among them, the improvement duration of post-migration residence and family economic conditions positively impacted their fertility behavior. Non-agricultural new industry workers with college degrees or above living in first-tier cities were less likely to have children and more likely to delay childbearing. Among the prediction models, both the artificial neural network model and logistic regression model had better prediction effects. Improving the employment and income of new industry workers, and introducing preferential housing policies might improve their probability of bearing children. The artificial neural network and logistic regression model could predict individual fertility behavior and provide a scientific basis for the urban population management.
Subject
Public Health, Environmental and Occupational Health
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献