Cutaneous tuberculosis—ambiguous transmission, bacterial diversity with biofilm formation in humoral abnormality: case report illustration

Author:

Zdziarski Przemysław,Paściak Mariola,Chudzik Anna,Kozińska Monika,Augustynowicz-Kopeć Ewa,Gamian Andrzej

Abstract

BackgroundCutaneous tuberculosis (CTB) and its paucibacillary forms are rare and difficult to diagnose, especially in immunocompromised patients with significant comorbidity. The aim of the study was to introduce the modern concept of the microbiome and diagnostic chain into clinical practice (patient-centered care) with the presentation of an atypical form of cutaneous tuberculosis with necrotizing non-healing ulcers leading to polymicrobial infection.MethodsThe study material included samples from sputum, broncho-alveolar lavage and skin ulcer, taken from a patient developing cutaneous tuberculosis. The microbiological investigation was performed, and identification of the isolates was carried out using genotyping and the matrix-assisted laser desorption ionization-time of flight mass spectrometry.ResultsThe immunocompromised patient with humoral abnormality (plasma cell dyscrasia) and severe paraproteinemia developed multiorgan tuberculosis. Although cutaneous manifestation preceded systemic and pulmonary symptoms (approximately half a year), the mycobacterial genotyping confirmed the same MTB strain existence in skin ulcers and the respiratory system. Therefore, the infectious chain: transmission, the portal of entry, and bacterial spreading in vivo, were unclear. Microbial diversity found in wound microbiota (among others Gordonia bronchialis, Corynebacterium tuberculostearicum, Staphylococcus haemolyticus, and Pseudomonas oryzihabitans) was associated with the spread of a skin lesion. The in vitro biofilm-forming capacity of strains isolated from the wound may represent the potential virulence of these strains. Thus, the role of polymicrobial biofilm may be crucial in ulcer formation and CTB manifestation.ConclusionsSevere wound healing as a unique biofilm-forming niche should be tested for Mycobacterium (on species and strain levels) and coexisting microorganisms using a wide range of microbiological techniques. In immunodeficient patients with non-typical CTB presentation, the chain of transmission and MTB spread is still an open issue for further research.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3