Short-term effects of ambient air pollution on emergency department visits for urolithiasis: A time-series study in Wuhan, China

Author:

Xu Haoyue,Liu Yaqi,Wang Jianing,Jin Xiaoqing

Abstract

BackgroundPrevious studies have explored the correlation between short-term exposure to air pollution and urinary system diseases, but lack of evidence on the correlation between air pollution and urolithiasis.MethodsDaily data of emergency department visits (EDVs), concentrations of six air pollutants (SO2, NO2, PM2.5, PM10, CO, and O3) and meteorological variables were collected in Wuhan, China, from 2016 to 2018. And a time-series study was conducted to investigate short-term effects of air pollutants on urolithiasis EDVs. In addition, stratified analyses by season, age and gender were also conducted.ResultsA total of 7,483 urolithiasis EDVs were included during the study period. A 10-μg/m3 increase of SO2, NO2, PM2.5, CO, PM10, and O3 corresponded to 15.02% (95% confidence interval [CI]: 1.69%, 30.11%), 1.96% (95% CI: 0.19%, 3.76%), 1.09% (95% CI:−0.24%, 2.43%), 0.14% (95% CI: 0.02%, 0.26%), 0.72% (95% CI: 0.02%, 1.43%), and 1.17% (95% CI: 0.40%, 1.94%) increases in daily urolithiasis EDVs. Significant positive correlations were observed between SO2, NO2, CO, and O3 and urolithiasis EDVs. The correlations were mainly among females (especially PM2.5 and CO) and younger people (especially SO2, NO2, and PM10) but the effect of CO was more obvious in elders. Furthermore, the effects of SO2 and CO were stronger in warm seasons, while the effects of NO2 were stronger in cool seasons.ConclusionOur time-series study indicates that short-term exposure to air pollution (especially SO2, NO2, CO, and O3) was positively correlated with EDVs for urolithiasis in Wuhan, China, and the effects varied by season, age and gender.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3