What Are Good Situations for Running? A Machine Learning Study Using Mobile and Geographical Data

Author:

Wang Shihan,Scheider Simon,Sporrel Karlijn,Deutekom Marije,Timmer Joris,Kröse Ben

Abstract

Running is a popular form of physical activity. Personal, social, and environmental determinants influence the engagement of the individual. To get insight in the relation between running behavior and external situations for different types of users, we carried out an extensive data mining study on large-scale datasets. We combined 4 years of historical running data (collected by a mobile exercise application from over 10K participants) with weather, topographical and demographical datasets. We introduce weighted frequent item mining for the analysis of the data. In this way, we capture temporal and environmental situations that frequently associate with different running performances. The results show that specific temporal and environmental situations (hour in a day, day in a week, temperature, distance to residential areas, and population density) influence the running performance of users more than other situational features. Hierarchical agglomerative clustering on the running data is used to split runners in two clusters (with sustained and less sustained running behavior). We compared the two groups of runners and found that runners with less sustained behavior are more sensitive to the environmental situations (especially several weather and location related features, such as temperature, weather type, distance to the nearest park) than regular runners. Further analysis focused on the situational features for the less sustained runners. Results show that specific feature values correspond to a better or worse running distance. Not only the influence of individual features was examined but also the interplay between features. Our findings provide important empirical evidence that the role of external situations in the running behavior of individuals can be derived from analysis of the combined historical datasets. This opens up a large potential to take those situations specifically into consideration when supporting individuals which show less sustained behavior.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Nationaal Regieorgaan Praktijkgericht Onderzoek SIA

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference52 articles.

1. Health benefits of physical activity: the evidence;Warburton;Can Med Assoc J,2006

2. Running forward: new frontiers in endurance exercise biology;Rowe;Circulation,2014

3. RianneW FrankB LarsB MaiC MariaH AnnemarieK Dutch Physical Activity Guideline (Beweegrichtlijnen)2018

4. HugovdP ResieH IneP AnnetTR Dutch Report of Sport (Rapportage Sport)2018

5. The pandemic of physical inactivity: global action for public health;Kohl;Lancet,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3