Author:
Sieroń Karolina,Knapik Katarzyna,Onik Grzegorz,Romuk Ewa,Birkner Ewa,Kwiatek Sebastian,Sieroń Aleksander
Abstract
Objective: The aim of the study was to assess the influence of electromagnetic fields with divergent physical properties on the prooxidative and antioxidative balances in homogenates of the tongue, salivary glands, esophagus, stomach, and small and large intestines of rats.Material and Methods: Forty rats were randomly divided into four equal groups, namely, a control group, a group exposed to low-frequency electromagnetic fields (LF-EMFs; frequency: 50 Hz; intensity: 10 kV/m; magnetic induction: 4.3 pT), a group exposed to radiofrequency electromagnetic fields (RF-EMFs) emitted by mobile phones (frequency: 900 MHz), and a group exposed simultaneously to LF-EMFs and RF-EMFs emitted by mobile phones. After 28 consecutive days of the experiment, the following pro- and antioxidative markers were assessed in the gastrointestinal tract homogenates: superoxide dismutase (SOD) and its two isoenzymes (Mn-SOD, Cu,Zn-SOD) catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), total antioxidative capacity (TAC), total oxidative status (TOS), and malondialdehyde (MDA).Results: In rats exposed to LF-EMFs, higher concentrations of the markers of prooxidant processes, MDA or TOS, were observed in the salivary glands, esophagus, and small intestine homogenates in comparison with the control group. Additionally, in the group of rats opposite to the control, antioxidant activity was observed. The main differences included a higher activity of Cu,Zn-SOD in homogenates of the tongue, salivary glands, and esophagus as well as decreased activity of CAT in homogenates of the tongue, esophagus, and small intestine. In animals exposed to RF-EMFs, the concentration of TOS was higher in the large intestine than in control rats. The main difference of antioxidant activity was presented by decreased Cu,Zn-SOD in homogenates of the salivary glands, stomach, small and large intestine as well as CAT in homogenates of the tongue, esophagus, stomach, and small and large intestine. Moreover, in rats exposed simultaneously to LF-EMFs and RF-EMFs, a lower concentration of TOS was observed. Antioxidant activity was presented by a decreased activity of CAT in homogenates of the tongue, esophagus, stomach, and small and large intestine in comparison to the control group.Conclusion: Among those applied in the study, electromagnetic fields of a low-frequency caused the most significant disturbances of oxidative stress in the rat gastrointestinal tract.
Subject
Public Health, Environmental and Occupational Health
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献