Coal Miners and Lung Cancer: Can Mortality Studies Offer a Perspective on Rat Inhalation Studies of Poorly Soluble Low Toxicity Particles?

Author:

McCunney Robert J.,Yong Mei

Abstract

Inhalation studies involving laboratory rats exposed to poorly soluble particles (PSLTs), such as carbon black and titanium dioxide, among others, have led to the development of lung cancer in conditions characterized as lung overload. Lung overload has been described as a physiological state in which pulmonary clearance is impaired, particles are not effectively removed from the lungs and chronic inflammation develops, ultimately leading to tumor growth. Since lung tumors have not occurred under similar states of lung overload in other laboratory animal species, such as mice, hamsters and guinea pigs, the relevance of the rat as a model for human risk assessment has presented regulatory challenges. It has been suggested that coal workers' pneumoconiosis may reflect a human example of apparent “lung overload” of poorly soluble particles. In turn, studies of risk of lung cancer in coal miners may offer a valuable perspective for understanding the significance of rat inhalation studies of PSLTs on humans. This report addresses whether coal can be considered a PSLT based on its composition in contrast to carbon black and titanium dioxide. We also review cohort mortality studies and case-control studies of coal workers. We conclude that coal differs substantially from carbon black and titanium dioxide in its structure and composition. Carbon black, a manufactured product, is virtually pure carbon (upwards of 98%); TiO2 is also a manufactured product. Coal contains carcinogens such as crystalline silica, beryllium, cadmium and iron, among others; in addition, coal mining activities tend to occur in the presence of operating machinery in which diesel exhaust particles, a Type I Human carcinogen, may be present in the occupational environment. As a result of its composition and the environment in which coal mining occurs, it is scientifically inappropriate to consider coal a PSLT. Despite coal not being similar to carbon black or TiO2, through the use of a weight of evidence approach-considered the preferred method when evaluating disparate studies to assess risk- studies of coal-mine workers do not indicate a consistent increase in lung cancer risk. Slight elevations in SMR cannot lead to a reliable conclusion about an increased risk due to limitations in exposure assessment and control of inherent biases in case-control studies, most notably confounding and recall bias. In conclusion, the weight of the scientific literature suggests that coal mine dust is not a PSLT, and it does not increase lung cancer risk.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference35 articles.

1. Expert workshop on the hazards and risks of poorly soluble low toxicity particles;Driscoll;Inhal Toxicol.,2020

2. What component of coal causes coal workers pneumoconiosis J Occup Environ;McCunney;Med,2009

3. A biomathematical Model of particle clearance and retention in the lungs of coal miners;Kuempel;Reg Toxicol Pharmacol.,2001

4. TranCL BuchananD Edinburgh, U.KInstitute of Occupational MedicineDevelopment of a Biomathematical Lung Model to Describe the Exposure-Dose Relationship for Inhaled Dust Among U.K. Coal Miners2000

5. Translational toxicology in setting occupational exposure limits for dusts and hazard classification - a critical evaluation of a recent approach to translate dust overload findings from rats to humans;Morfeld;Part Fibre Toxicol.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3