Exploring seasonal diurnal surface temperature variation in cities based on ECOSTRESS data: A local climate zone perspective

Author:

Shi Zhipeng,Yang Jun,Wang Ling-en,Lv Fang,Wang Guiyang,Xiao Xiangming,Xia Jianhong

Abstract

High urban temperatures affect city livability and may be harmful for inhabitants. Analyzing spatial and temporal differences in surface temperature and the thermal impact of urban morphological heterogeneity can promote strategies to improve the insulation of the urban thermal environment. Therefore, we analyzed the diurnal variation of land surface temperature (LST) and seasonal differences in the Fifth Ring Road area of Beijing from the perspective of the Local Climate Zone (LCZ) using latest ECOSTRESS data. We used ECOSTRESS LST data with a resolution of 70 m to accurately interpret the effects of urban morphology on the local climate. The study area was dominated by the LCZ9 type (sparse low-rise buildings) and natural LCZ types, such as LCZA/B (woodland), LCZD (grassland), and LCZG (water body), mainly including park landscapes. There were significant differences in LST observed in different seasons as well as day and night. During daytime, LST was ranked as follows: summer > spring > autumn > winter. During night-time, it was ranked as follows: summer > autumn > spring > winter. All data indicated that the highest and lowest LST was observed in summer and winter, respectively. LST was consistent with LCZ in terms of spatial distribution. Overall, the LST of each LCZ during daytime was higher than that of night-time during different seasons (except winter), and the average LST of each LCZ during the diurnal period in summer was higher than that of other seasons. The LST of each LCZ during daytime in winter was lower than that of the corresponding night-time, which indicates that it is colder in the daytime during winter. The results presented herein can facilitate improved analysis of spatial and temporal differences in surface temperature in urban areas, leading to the development of strategies aimed at improving livability and public health in cities.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3