Impact of engineering renovation on dynamic health risk assessment of mercury in a thermometer enterprise

Author:

Wu Peihong,Dou Jianrui,Xu Yanqiong,Yu Zhengmin,Han Lei,Zhu Baoli,Liu Xin,Zhang Hengdong

Abstract

The occupational health risk assessments (OHRA) of inorganic mercury (Hg) are rarely reported. We conducted an internal and external exposure monitoring of employees in a thermometer enterprise which experienced the renovation of occupational health engineering, followed by an evaluation on the health risks of Hg exposure with four OHRA methods in order to find out a most suitable model. The results showed that the concentrations of airborne and urinary Hg in all testing positions and subjects obviously decreased after the engineering renovation, meeting the occupational exposure limits (OELs) of China. Subsequently, four OHRA models, namely the models from US Environmental Protection Agency (EPA), Ministry of Manpower (MOM), International Council on Mining and Metals (ICMM), and Classification of occupational hazards at workplaces Part 2: Occupational exposure to chemicals (GBZ/T 229.2-2010) were applied in the qualitative risk assessment. And the evaluation results of different methods were standardized by risk ratio (RR), which indicated MOM, ICMM risk rating, and GBZ/T 229.2 models were consistent with the order of inherent risk levels in those working processes. The order of RR between four models was: RREPA > RRICMM > RRMOM> RRGBZ/T229.2 (P < 0.05). Based on the strict limits of Hg, GBZ/T 229.2, and MOM methods may have more potentials in practical application. Though the working environment has been significantly improved via engineering renovation, it is strongly suggested that the thermometer company conduct more effective risk management covering all production processes to minimize Hg exposure levels and health risk ratings.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3