Using Whole Genome Sequencing to Trace, Control and Characterize a Hospital Infection of IMP-4-Producing Klebsiella pneumoniae ST2253 in a Neonatal Unit in a Tertiary Hospital, China

Author:

Bai Yuanyuan,Shao Chunhong,Hao Yingying,Wang Yueling,Jin Yan

Abstract

Background: The purpose of this study is to use whole genome sequencing (WGS) combined with epidemiological data to track a hospital infection of the carbapenem-resistant Klebsiella pneumoniae (CRKP), which affected 3 neonatal patients in the neonatal intensive care unit (NICU).Methods: The minimum inhibitory concentrations for the antimicrobial agents were determined according to the guidelines of the Clinical and Laboratory Standards Institute. Beta-lactamases were investigated using the polymerase chain reaction and DNA sequencing. The transferability of the plasmid was investigated by a conjugation experiment. The clonal relationships were evaluated using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). WGS and single nucleotide polymorphisms (SNPs) analysis were performed on the CRKP isolates to investigate how the infection might progress.Results: Nine CRKP isolates were obtained from the NICU, seven from three patients, one from a duster cloth and one from the hand of a nurse, they all harbored blaIMP-4. Other resistance genes including blaKPC-2, blaIMP-4, blaSHV-1, blaTEM-1, blaCTX-M-15, and blaDHA-1 were also detected. PFGE analysis showed that IMP-4-producing K. pneumoniae were clonally related, and MLST assigned them to a new sequence type 2253. The SNP variations throughout the genome divided the 9 strains into three clades. Clade 1 comprised 7 strains (K1- K2 and K4-K8), whereas clade 2 and 3 consisted of only one strain each: K3 and K9, respectively.The sputum isolate K3 from patient 3 was the most distinct one differing from the other eight isolates by 239-275 SNPs.Conclusions: This is a report of using WGS to track a hospital infecion of IMP-4-producing K. pneumoniae ST2253 among neonates. Nosocomial surveillance systems are needed to limit the spread of the infection caused by these pathogens resulting from the environmental exposure in NICUs.

Funder

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3