Classification of Non-Functional Requirements From IoT Oriented Healthcare Requirement Document

Author:

Khurshid Iqra,Imtiaz Salma,Boulila Wadii,Khan Zahid,Abbasi Almas,Javed Abdul Rehman,Jalil Zunera

Abstract

Internet of Things (IoT) involves a set of devices that aids in achieving a smart environment. Healthcare systems, which are IoT-oriented, provide monitoring services of patients' data and help take immediate steps in an emergency. Currently, machine learning-based techniques are adopted to ensure security and other non-functional requirements in smart health care systems. However, no attention is given to classifying the non-functional requirements from requirement documents. The manual process of classifying the non-functional requirements from documents is erroneous and laborious. Missing non-functional requirements in the Requirement Engineering (RE) phase results in IoT oriented healthcare system with compromised security and performance. In this research, an experiment is performed where non-functional requirements are classified from the IoT-oriented healthcare system's requirement document. The machine learning algorithms considered for classification are Logistic Regression (LR), Support Vector Machine (SVM), Multinomial Naive Bayes (MNB), K-Nearest Neighbors (KNN), ensemble, Random Forest (RF), and hybrid KNN rule-based machine learning (ML) algorithms. The results show that our novel hybrid KNN rule-based machine learning algorithm outperforms others by showing an average classification accuracy of 75.9% in classifying non-functional requirements from IoT-oriented healthcare requirement documents. This research is not only novel in its concept of using a machine learning approach for classification of non-functional requirements from IoT-oriented healthcare system requirement documents, but it also proposes a novel hybrid KNN-rule based machine learning algorithm for classification with better accuracy. A new dataset is also created for classification purposes, comprising requirements related to IoT-oriented healthcare systems. However, since this dataset is small and consists of only 104 requirements, this might affect the generalizability of the results of this research.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3