Successful pandemic management through computer science: a case study of a financial corporation with workers on premises

Author:

Partida-Hanon Angélica,Díaz-Garrido Ramón,Mendiguren-Santiago José María,Gómez-Paredes Laura,Muñoz-Gutiérrrez Juan,Miguel-Rodríguez María Antonia,Reinoso-Barbero Luis

Abstract

BackgroundIn November 2019, an infectious agent that caused a severe acute respiratory illness was first detected in China. Its rapid spread resulted in a global lockdown with negative economic impacts. In this regard, we expose the solutions proposed by a multinational financial institution that maintained their workers on premises, so this methodology can be applied to possible future health crisis.ObjectivesTo ensure a secure workplace for the personnel on premises employing biomedical prevention measures and computational tools.MethodsProfessionals were subjected to recurrent COVID-19 diagnostic tests during the pandemic. The sanitary team implemented an individual following to all personnel and introduced the information in databases. The data collected were used for clustering algorithms, decision trees, and networking diagrams to predict outbreaks in the workplace. Individualized control panels assisted the decision-making process to increase, maintain, or relax restrictive measures.Results55,789 diagnostic tests were performed. A positive correlation was observed between the cumulative incidence reported by Madrid’s Ministry of Health and the headcount. No correlation was observed for occupational infections, representing 1.9% of the total positives. An overall 1.7% of the cases continued testing positive for COVID-19 after 14 days of quarantine.ConclusionBased on a combined approach of medical and computational science tools, we propose a management model that can be extended to other industries that can be applied to possible future health crises. This work shows that this model resulted in a safe workplace with a low probability of infection among workers during the pandemic.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3