A Roadmap for Building Data Science Capacity for Health Discovery and Innovation in Africa

Author:

Beyene Joseph,Harrar Solomon W.,Altaye Mekibib,Astatkie Tessema,Awoke Tadesse,Shkedy Ziv,Mersha Tesfaye B.

Abstract

Technological advances now make it possible to generate diverse, complex and varying sizes of data in a wide range of applications from business to engineering to medicine. In the health sciences, in particular, data are being produced at an unprecedented rate across the full spectrum of scientific inquiry spanning basic biology, clinical medicine, public health and health care systems. Leveraging these data can accelerate scientific advances, health discovery and innovations. However, data are just the raw material required to generate new knowledge, not knowledge on its own, as a pile of bricks would not be mistaken for a building. In order to solve complex scientific problems, appropriate methods, tools and technologies must be integrated with domain knowledge expertise to generate and analyze big data. This integrated interdisciplinary approach is what has become to be widely known as data science. Although the discipline of data science has been rapidly evolving over the past couple of decades in resource-rich countries, the situation is bleak in resource-limited settings such as most countries in Africa primarily due to lack of well-trained data scientists. In this paper, we highlight a roadmap for building capacity in health data science in Africa to help spur health discovery and innovation, and propose a sustainable potential solution consisting of three key activities: a graduate-level training, faculty development, and stakeholder engagement. We also outline potential challenges and mitigating strategies.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference24 articles.

1. Building the biomedical data science workforce;Dunn;PLoS Biol.,2017

2. The emerging field of mobile health;Steinhubl;Sci Transl Med,2015

3. Data Science for Child Health;Bennett;J Pediatr.,2019

4. How data science can advance mental health research;Russ;Nat Hum Behav.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3