Carbon sequestration potential of different forest types in Pakistan and its role in regulating services for public health

Author:

Ali Shahab,Khan Shujaul Mulk,Ahmad Zeeshan,Siddiq Zafar,Ullah Abd,Yoo Sunghoon,Han Heesup,Raposo António

Abstract

A high amount of CO2 causes numerous health effects, including headaches, restlessness, difficulty in breathing, increased heart rate, high blood pressure, asphyxia, and dizziness. This issue of increasing atmospheric CO2 can only be solved via above-ground and below-ground carbon sequestration (CS). This study was designed to determine the relationship between CS with the crown area (CA), diameter at breast height (DBH), height (H), species richness (SR), and elevation in different forest types of Pakistan with the following specific objectives: (1) to quantify the direct and indirect relationship of carbon sequestration with CA, DBH, H, and SR in various natural forest types and (2) to evaluate the effect of elevation on the trees functional traits and resultant CS. We used the linear structural equation model (SEM) for each conceptual model. Our results confirmed that the highest CS potential was recorded for dry temperate conifer forests (DTCF) i.e., 52.67%, followed by moist temperate mix forests (MTMF) and sub-tropical broad-leaved forests (STBLF). The SEM further described the carbon sequestration variation, i.e., 57, 32, 19, and 16% under the influence of CA (β = 0.90 and P-value < 0.001), H (β = 0.13 and p-value = 0.05), DBH (β = 0.07 and p-value = 0.005), and SR (β = −0.55 and p-value = 0.001), respectively. The individual direct effect of SR on carbon sequestration has been negative and significant. At the same time, the separate effect of CA, DBH, and H had a positive and significant effect on carbon sequestration. The remaining 20% of CS variations are indirectly influenced by elevation. This means that elevation affects carbon sequestration indirectly through CA, DBH, H, and SR, i.e., β = 0.133 and P-value < 0.166, followed by β = 0.531 and P-value < 0.001, β = 0.007 and P-value < 0.399, and β = −0.32 and P-value < 0.001, respectively. It is concluded that abiotic factors mainly determined carbon sequestration in forest ecosystems along with the elevation gradients in Pakistan. Quantifying the role of various forest types in carbon dioxide (CO2) reduction leads to improved air quality, which positively impacts human health. This is an imperative and novel study that links the dynamics of the biosphere and atmosphere.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3