Author:
Goswami Gour Gobinda,Mahapatro Mausumi,Ali A. R. M. Mehrab,Rahman Raisa
Abstract
This paper used Our World data for coronavirus disease-2019 (COVID-19) death count, test data, stringency, and transmission count and prepared a path model for COVID-19 deaths. We augmented the model with age structure-related variables and comorbidity via non-communicable diseases for 117 countries of the world for September 23, 2021, on a cross-section basis. A broad-based global quantitative study incorporating these two prominent channels with regional variation was unavailable in the existing literature. Old age and comorbidity were identified as two prime determinants of COVID-19 mortality. The path model showed that after controlling for these factors, one SD increase in the proportion of persons above 65, above 70, or of median age raised COVID-19 mortality by more than 0.12 SDs for 117 countries. The regional intensity of death is alarmingly high in South America, Europe, and North America compared with Oceania. After controlling for regions, the figure was raised to 0.213, which was even higher. For old age, the incremental coefficient was the highest for South America (0.564), and Europe (0.314), which were substantially higher than in Oceania. The comorbidity channel via non-communicable diseases illustrated that one SD increase in non-communicable disease intensity increased COVID-19 mortality by 0.132 for the whole sample. The regional figure for the non-communicable disease was 0.594 for South America and 0.358 for Europe compared with the benchmark region Oceania. The results were statistically significant at a 10% level of significance or above. This suggested that we should prioritize vaccinations for the elderly and people with comorbidity via non-communicable diseases like heart disease, cancer, chronic respiratory disease, and diabetes. Further attention should be given to South America and Europe, which are the worst affected regions of the world.
Subject
Public Health, Environmental and Occupational Health
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献