Quantifying the future risk of dengue under climate change in Japan

Author:

Hayashi Katsuma,Fujimoto Marie,Nishiura Hiroshi

Abstract

BackgroundIn metropolitan Tokyo in 2014, Japan experienced its first domestic dengue outbreak since 1945. The objective of the present study was to quantitatively assess the future risk of dengue in Japan using climate change scenarios in a high-resolution geospatial environment by building on a solid theory as a baseline in consideration of future adaptation strategies.MethodsUsing climate change scenarios of the Model for Interdisciplinary Research on Climate version 6 (MIROC6), representative concentration pathway (RCP) 2.6, 4.5, and 8.5, we computed the daily average temperature and embedded this in the effective reproduction number of dengue, R(T), to calculate the extinction probability and interepidemic period across Japan.ResultsIn June and October, the R(T) with daily average temperature T, was <1 as in 2022; however, an elevation in temperature increased the number of days with R(T) >1 during these months under RCP8.5. The time period with a risk of dengue transmission gradually extended to late spring (April–May) and autumn (October–November). Under the RCP8.5 scenario in 2100, the possibility of no dengue-free months was revealed in part of southernmost Okinawa Prefecture, and the epidemic risk extended to the entire part of northernmost Hokkaido Prefecture.ConclusionEach locality in Japan must formulate action plans in response to the presented scenarios. Our geographic analysis can help local governments to develop adaptation policies that include mosquito breeding site elimination, distribution of adulticides and larvicides, and elevated situation awareness to prevent transmission via bites from Aedes vectors.

Funder

Japan Society for the Promotion of Science

Environmental Restoration and Conservation Agency

Ministry of Health, Labour and Welfare

Japan Agency for Medical Research and Development

Strategic International Collaborative Research Program

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference41 articles.

1. Dengue and Severe Dengue-Fact sheet. WHO.

2. The global distribution of the arbovirus vectors Aedes aegypti and Ae;Kraemer;albopictus. Elife,2015

3. Climate change and vector-borne diseases: a regional analysis;Githeko;Bull World Health Organ.,2000

4. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti;Lambrechts;Proc Natl Acad Sci USA,2011

5. Global-scale relationships between climate and the dengue fever vector, Aedes aegypti;Hopp;Clim Change,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3