Machine learning models to predict the maximum severity of COVID-19 based on initial hospitalization record

Author:

Hwangbo Suhyun,Kim Yoonjung,Lee Chanhee,Lee Seungyeoun,Oh Bumjo,Moon Min Kyong,Kim Shin-Woo,Park Taesung

Abstract

BackgroundAs the worldwide spread of coronavirus disease 2019 (COVID-19) continues for a long time, early prediction of the maximum severity is required for effective treatment of each patient.ObjectiveThis study aimed to develop predictive models for the maximum severity of hospitalized COVID-19 patients using artificial intelligence (AI)/machine learning (ML) algorithms.MethodsThe medical records of 2,263 COVID-19 patients admitted to 10 hospitals in Daegu, Korea, from February 18, 2020, to May 19, 2020, were comprehensively reviewed. The maximum severity during hospitalization was divided into four groups according to the severity level: mild, moderate, severe, and critical. The patient's initial hospitalization records were used as predictors. The total dataset was randomly split into a training set and a testing set in a 2:1 ratio, taking into account the four maximum severity groups. Predictive models were developed using the training set and were evaluated using the testing set. Two approaches were performed: using four groups based on original severity levels groups (i.e., 4-group classification) and using two groups after regrouping the four severity level into two (i.e., binary classification). Three variable selection methods including randomForestSRC were performed. As AI/ML algorithms for 4-group classification, GUIDE and proportional odds model were used. For binary classification, we used five AI/ML algorithms, including deep neural network and GUIDE.ResultsOf the four maximum severity groups, the moderate group had the highest percentage (1,115 patients; 49.5%). As factors contributing to exacerbation of maximum severity, there were 25 statistically significant predictors through simple analysis of linear trends. As a result of model development, the following three models based on binary classification showed high predictive performance: (1) Mild vs. Above Moderate, (2) Below Moderate vs. Above Severe, and (3) Below Severe vs. Critical. The performance of these three binary models was evaluated using AUC values 0.883, 0.879, and, 0.887, respectively. Based on results for each of the three predictive models, we developed web-based nomograms for clinical use (http://statgen.snu.ac.kr/software/nomogramDaeguCovid/).ConclusionsWe successfully developed web-based nomograms predicting the maximum severity. These nomograms are expected to help plan an effective treatment for each patient in the clinical field.

Funder

Ministry of Science and ICT, South Korea

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lessons Learned: Measurement of the Impact of Covid-19 Post-pandemic;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3