A real-time driver fatigue identification method based on GA-GRNN

Author:

Wang Xiaoyuan,Chen Longfei,Zhang Yang,Shi Huili,Wang Gang,Wang Quanzheng,Han Junyan,Zhong Fusheng

Abstract

It is of great practical and theoretical significance to identify driver fatigue state in real time and accurately and provide active safety warning in time. In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. The specific work is as follows: (1) design simulated driving experiment and real driving experiment, determine the fatigue state of drivers according to the binary Karolinska Sleepiness Scale (KSS), and establish the fatigue driving sample database. (2) Improved Multi-Task Cascaded Convolutional Networks (MTCNN) and applied to face detection. Dlib library was used to extract the coordinate values of face feature points, collect the characteristic parameters of driver's eyes and mouth, and calculate the Euler Angle parameters of head posture. A fatigue identification model was constructed by using multiple characteristic parameters. (3) Genetic Algorithm (GA) was used to find the optimal smooth factor of Generalized Regression Neural Network (GRNN) and construct GA-GRNN fatigue driving identification model. Compared with K-Nearest Neighbor (KNN), Random Forest (RF), and GRNN fatigue driving identification algorithms. GA-GRNN has the best generalization ability and high stability, with an accuracy of 93.3%. This study provides theoretical and technical support for the application of driver fatigue identification.

Funder

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3