Estimating sectoral COVID-19 economic losses in the Philippines using nighttime light and electricity consumption data

Author:

Del Castillo Ma. Flordeliza P.,Fujimi Toshio,Tatano Hirokazu

Abstract

IntroductionEconomic loss estimation is critical for policymakers to craft policies that balance economic and health concerns during pandemic emergencies. However, this task is time-consuming and resource-intensive, posing challenges during emergencies.MethodTo address this, we proposed using electricity consumption (EC) and nighttime lights (NTL) datasets to estimate the total, commercial, and industrial economic losses from COVID-19 lockdowns in the Philippines. Regression models were employed to establish the relationship of GDP with EC and NTL. Then, models using basic statistics and weather data were developed to estimate the counterfactual EC and NTL, from which counterfactual GDP was derived. The difference between the actual and the counterfactual GDP from 2020 to 2021 yielded economic loss.ResultsThis paper highlights three findings. First, the regression model results established that models based on EC (adj-R2 ≥ 0.978) were better at explaining GDP than models using NTL (adj-R2 ≥ 0.663); however, combining both EC and NTL improved the prediction (adj-R2 ≥ 0.979). Second, counterfactual EC and NTL could be estimated using models based on statistics and weather data explaining more than 81% of the pre-pandemic values. Last, the estimated total loss amounted to 2.9 trillion PhP in 2020 and 3.2 trillion PhP in 2021. More than two-thirds of the losses were in the commercial sector as it responded to both policies and the COVID-19 case surge. In contrast, the industrial sector was affected primarily by the lockdown implementation.DiscussionThis method allowed monitoring of economic losses resulting from long-term and large-scale hazards such as the COVID-19 pandemic. These findings can serve as empirical evidence for advocating targeted strategies that balance public health and the economy during pandemic scenarios.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3