A Comparison Between Single- and Multi-Scale Approaches for Classification of Histopathology Images

Author:

D'Amato Marina,Szostak Przemysław,Torben-Nielsen Benjamin

Abstract

Whole slide images (WSIs) are digitized histopathology images. WSIs are stored in a pyramidal data structure that contains the same images at multiple magnification levels. In digital pathology, most algorithmic approaches to analyze WSIs use a single magnification level. However, images at different magnification levels may reveal relevant and distinct properties in the image, such as global context or detailed spatial arrangement. Given their high resolution, WSIs cannot be processed as a whole and are broken down into smaller pieces called tiles. Then, a prediction at the tile-level is made for each tile in the larger image. As many classification problems require a prediction at a slide-level, there exist common strategies to integrate the tile-level insights into a slide-level prediction. We explore two approaches to tackle this problem, namely a multiple instance learning framework and a representation learning algorithm (the so-called “barcode approach”) based on clustering. In this work, we apply both approaches in a single- and multi-scale setting and compare the results in a multi-label histopathology classification task to show the promises and pitfalls of multi-scale analysis. Our work shows a consistent improvement in performance of the multi-scale models over single-scale ones. Using multiple instance learning and the barcode approach we achieved a 0.06 and 0.06 improvement in F1 score, respectively, highlighting the importance of combining multiple scales to integrate contextual and detailed information.

Funder

Roche

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference27 articles.

1. Multiple-instance learning for medical image and video analysis;Quellec;IEEE Rev Biomed Eng.,2017

2. IlseM TomczakJ WellingM Attention-Based Deep Multiple Instance Learning. In: Proceedings of the 35th International Conference on Machine Learning.2018

3. AdnanM KalraS TizhooshHR Representation Learning of Histopathology Images using Graph Neural Networks.2020

4. Creating small but meaningful representations of digital pathology images20615 GueréndelC ArnoldP Torben-NielsenB PMLRProceedings of the MICCAI Workshop on Computational Pathology2021

5. PathEdEx - uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data;Shin;J Pathol Inform.,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3