Author:
Luo Xixi,Liu Quanlong,Qiu Zunxiang
Abstract
This paper firstly proposes a modified human factor classification analysis system (HFACS) framework based on literature analysis and the characteristics of falling accidents in construction. Second, a Bayesian network (BN) topology is constructed based on the dependence between human factors and organizational factors, and the probability distribution of the human-organizational factors in a BN risk assessment model is calculated based on falling accident reports and fuzzy set theory. Finally, the sensitivity of the causal factors is determined. The results show that 1) the most important reason for falling accidents is unsafe on-site supervision. 2) There are significant factors that influence falling accidents at different levels in the proposed model, including operation violations in the unsafe acts layer, factors related to an adverse technological environment for the unsafe acts layer, loopholes in site management in the unsafe on-site supervision layer, lack of safety culture in the adverse organizational influence layer, and lax government regulation in the adverse external environment layer. 3) According to the results of the BN risk assessment model, the most likely causes are loopholes in site management work, lack of safety culture, insufficient safety inspections and acceptance, vulnerable process management and operation violations.
Funder
Fundamental Research Funds for the Central Universities
Subject
Public Health, Environmental and Occupational Health
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献