Craniometric determinants of the fitted filtration efficiency of disposable masks

Author:

Griffin Jacob S.,McInroe E. Melissa,Pennington Edward R.,Steinhardt William,Chen Hao,Prince Steven E.,Samet James M.

Abstract

IntroductionExposure to harmful aerosols is of increasing public health concern due to the SARS-CoV-2 pandemic and wildland fires. These events have prompted risk reduction behaviors, notably the use of disposable respiratory protection. This project investigated whether craniofacial morphology impacts the efficiency of disposable masks (N95, KN95, surgical masks, KF94) most often worn by the public to protect against toxic and infectious aerosols. This project was registered with ClinicaltTrials.gov (NCT05388201; registration May 18, 2022).MethodsOne-hundred participants (50 men, 50 women) visited the Environmental Protection Agency’s Human Studies Facility in Chapel Hill, NC between 2022-2023. Craniometrics and 3D scans were used to separate participants into four clusters. Boosting and elastic net regression yielded five measurements (bizygomatic breadth, nose length, bizygomatic nasal arc, neck circumference, ear breadth) that were the best predictors of filtration efficiency based on overall model fit. Fitted filtration efficiency was quantified for each mask at baseline and when tightened using an ear-loop clip.ResultsThe mean unmodified mask performance ranged from 55.3% (15.7%) in the large KF94 to 69.5% (12.3%) in the KN95. Modified performance ranged from 66.3% (9.4%) in the surgical to 80.7% (12.0%) in the KN95. Clusters with larger face width and neck circumference had higher unmodified mask efficiency. Larger nose gap area and nose length decreased modified mask performance.DiscussionWe identify face width, nose size, nose shape, neck circumference, and ear breadth as specific features that modulate disposable mask fit in both unmodified and modified conditions. This information can optimize guidance on respiratory protection afforded by disposable ear-loop masks.

Funder

Environmental Protection Agency

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3