Safety-oriented planning of expressway truck service areas based on driver demand

Author:

Ding Wenlong,Wang Yunyun,Chu Pengzi,Chen Feng,Song Yongchao,Zhang Ning,Lin Dong

Abstract

The rapid development of the economy has promoted the growth of freight transportation. The truck service areas on expressways, as the main places for truck drivers to rest, play an important role in ensuring the driving safety of trucks. If these service areas are constructed densely or provide a plentiful supply of parking areas, they are costly to construct. However, if the distance between two adjacent truck service areas is very large or the number of truck parking spaces in service areas is small, the supply will fail to meet the parking needs of truck drivers. In this situation, the continuous working time of truck drivers will be longer, and this is likely to cause driver fatigue and even traffic accidents. To address these issues, this paper established a non-linear optimization model for truck service area planning of expressways to optimize truck driving safety. An improved genetic algorithm is proposed to solve the model. A case study of a 215.5-kilometers-length section of the Guang-Kun expressway in China was used to demonstrate the effectiveness of the model and algorithm. As validated by this specific case, the proposed model and solution algorithm can provide an optimal plan for the layout of truck service areas that meet the parking needs of truck drivers while minimizing the service loss rate. The research results of this paper can contribute to the construction of truck service areas and the parking management of trucks on expressways.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring determinants of freeway service area usage in the context of sustainable and collaborated development for transport and tourism;Transportation Research Part A: Policy and Practice;2024-07

2. Predicting the Vehicle Turn-in Rates of Highway Service Area: A Random Forest Approach;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

3. A review of research methods on highest and best use for toll rest area;Materials Today: Proceedings;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3