Author:
Yang Ruxin,Yang Jun,Wang Lingen,Xiao Xiangming,Xia Jianhong
Abstract
Urban heat islands (UHIs) and their energy consumption are topics of widespread concern. This study used remote sensing images and building and meteorological data as parameters, with reference to Oke's local climate zone (LCZ), to divide urban areas according to the height and density of buildings and land cover types. While analyzing the heat island intensity, the neural network training method was used to obtain temperature data with good temporal as well as spatial resolution. Combining degree-days with the division of LCZs, a more accurate distribution of energy demand can be obtained by different regions. Here, the spatial distribution of buildings in Shenyang, China, and the law of land surface temperature (LST) and energy consumption of different LCZ types, which are related to building height and density, were obtained. The LST and energy consumption were found to be correlated. The highest heat island intensity, i.e., UHILCZ 4, was 8.17°C. The correlation coefficients of LST with building height and density were −0.16 and 0.24, respectively. The correlation between urban cooling energy demand and building height was −0.17, and the correlation between urban cooling energy demand and building density was 0.17. The results indicate that low- and medium-rise buildings consume more cooling energy.
Subject
Public Health, Environmental and Occupational Health
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献