How SARS-CoV-2 and Comparable Pathogens Can Be Defeated in a Single Day: Description and Mathematical Model of the Carrier Separation Plan (CSP)

Author:

Epstein Robert,Houser Connan,Wang Ruixiao

Abstract

A simple, common-sense, three-component procedure—the Carrier Separation Plan (CSP)—can immediately halt the transmission of SARS-CoV-2 or a comparable pathogen, allow the safe reopening of an entire economy without the need for social distancing, and quickly eradicate the pathogen from the population (assuming the pathogen can be killed by the immune systems of the carriers). The three components are (a) nearly simultaneous self-testing for the pathogen by an entire population, followed rapidly by (b) nearly simultaneous self-isolation of carriers, and (c) secondary screening at entrances to facilities where people congregate. After a period of preparation lasting roughly 5–10 weeks, these steps could and probably should be taken in a single day. The power of this methodology has already been demonstrated in varying degrees with groups ranging in size from 1,000 to 11 million. Although this plan might seem daunting, its costs are minimal compared to the losses we have incurred by relying on half measures, and the US and other countries have the technological, logistical, and industrial capacities to implement this plan in a matter of weeks. With proper messaging during the weeks leading up to the testing, compliance in such a program is likely to be high given the potential benefits, and because participation is voluntary and testing is noninvasive, the legal and ethical issues associated with such a program are minimal – trivial, in fact, compared to those associated with imposing a months-long lockdown on an entire population. A SIRD/CSP model suggests that the single-day testing and separation procedure will substantially lower the number of infections, even if compliance with the procedure is modest. Modeling also suggests that when long-term secondary screening is added to the 1-day procedure, over time, the pathogen is eradicated from the population. This can occur even when compliance with secondary screening is itself relatively low.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3