Automatic anxiety recognition method based on microblog text analysis

Author:

Yu Yang,Li Qi,Liu Xiaoqian

Abstract

Mental health has traditionally been assessed using a self-report questionnaire. Although this approach produces accurate results, it has the disadvantage of being labor-intense and time-consuming. This study aimed to extract original text information published by users on the social media platform (Sina Weibo). A machine learning method was used to train the model and predict the anxiety state of the user automatically. Data of 1,039 users were collected. First, Weibo users were invited to fill the anxiety self-assessment scale. All original text data ever published by the users were collected. Second, the Simplified Chinese-Linguistic Inquiry and Word Count (SC-LIWC) were extracted for feature selection and model training. We found that the model achieved the best performance when the XGBoostRegressor algorithm was used. The Pearson correlation coefficient between the model predicted scores and self-reported scores was moderate (r = 0.322). In addition, we tested the reliability of the model, and found that the model had high reliability (r = 0.72). The experimental results further showed that the model was feasible and effective and could use the digital footprints to predict psychological characteristics.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3