A graph convolutional network for predicting COVID-19 dynamics in 190 regions/countries

Author:

Anno Sumiko,Hirakawa Tsubasa,Sugita Satoru,Yasumoto Shinya

Abstract

Introduction:Coronavirus disease (COVID-19) rapidly spread from Wuhan, China to other parts of China and other regions/countries around the world, resulting in a pandemic due to large populations moving through the massive transport hubs connecting all regions of China via railways and a major international airport. COVID-19 will remain a threat until safe and effective vaccines and antiviral drugs have been developed, distributed, and administered on a global scale. Thus, there is urgent need to establish effective implementation of preemptive non-pharmaceutical interventions for appropriate prevention and control strategies, and predicting future COVID-19 cases is required to monitor and control the issue.MethodsThis study attempts to utilize a three-layer graph convolutional network (GCN) model to predict future COVID-19 cases in 190 regions and countries using COVID-19 case data, commercial flight route data, and digital maps of public transportation in terms of transnational human mobility. We compared the performance of the proposed GCN model to a multilayer perceptron (MLP) model on a dataset of COVID-19 cases (excluding the graph representation). The prediction performance of the models was evaluated using the mean squared error.ResultsOur results demonstrate that the proposed GCN model can achieve better graph utilization and performance compared to the baseline in terms of both prediction accuracy and stability.DiscussionThe proposed GCN model is a useful means to predict COVID-19 cases at regional and national levels. Such predictions can be used to facilitate public health solutions in public health responses to the COVID-19 pandemic using deep learning and data pooling. In addition, the proposed GCN model may help public health policymakers in decision making in terms of epidemic prevention and control strategies.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3