Bibliometric and visual analysis of machine learning-based research in acute kidney injury worldwide

Author:

Yu Xiang,Wu RiLiGe,Ji YuWei,Feng Zhe

Abstract

BackgroundAcute kidney injury (AKI) is a serious clinical complication associated with adverse short-term and long-term outcomes. In recent years, with the rapid popularization of electronic health records and artificial intelligence machine learning technology, the detection rate and treatment of AKI have been greatly improved. At present, there are many studies in this field, and a large number of articles have been published, but we do not know much about the quality of research production in this field, as well as the focus and trend of current research.MethodsBased on the Web of Science Core Collection, studies reporting machine learning-based AKI research that were published from 2013 to 2022 were retrieved and collected after manual review. VOSviewer and other software were used for bibliometric visualization analysis, including publication trends, geographical distribution characteristics, journal distribution characteristics, author contributions, citations, funding source characteristics, and keyword clustering.ResultsA total of 336 documents were analyzed. Since 2018, publications and citations have increased dramatically, with the United States (143) and China (101) as the main contributors. Regarding authors, Bihorac, A and Ozrazgat-Baslanti, T from the Kansas City Medical Center have published 10 articles. Regarding institutions, the University of California (18) had the most publications. Approximately 1/3 of the publications were published in Q1 and Q2 journals, of which Scientific Reports (19) was the most prolific journal. Tomašev et al.'s study that was published in 2019 has been widely cited by researchers. The results of cluster analysis of co-occurrence keywords suggest that the construction of AKI prediction model related to critical patients and sepsis patients is the research frontier, and XGBoost algorithm is also popular.ConclusionThis study first provides an updated perspective on machine learning-based AKI research, which may be beneficial for subsequent researchers to choose suitable journals and collaborators and may provide a more convenient and in-depth understanding of the research basis, hotspots and frontiers.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference42 articles.

1. Acute kidney injury: biomarker-guided diagnosis and management;Yoon;Medicina.,2022

2. Acute kidney injury: diagnosis and management;Mercado;Am Fam Phys.,2019

3. The aftermath of acute kidney injury: a narrative review of long-term mortality and renal function;Fortrie;Crit Care.,2019

4. Introduction to artificial intelligence in medicine;Mintz;Minim Invasive Ther Allied Technol.,2019

5. Acute kidney injury in the critically ill: an updated review on pathophysiology and management;Pickkers;Intensive Care Med.,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3