Resilience-aware MLOps for AI-based medical diagnostic system

Author:

Moskalenko Viacheslav,Kharchenko Vyacheslav

Abstract

BackgroundThe healthcare sector demands a higher degree of responsibility, trustworthiness, and accountability when implementing Artificial Intelligence (AI) systems. Machine learning operations (MLOps) for AI-based medical diagnostic systems are primarily focused on aspects such as data quality and confidentiality, bias reduction, model deployment, performance monitoring, and continuous improvement. However, so far, MLOps techniques do not take into account the need to provide resilience to disturbances such as adversarial attacks, including fault injections, and drift, including out-of-distribution. This article is concerned with the MLOps methodology that incorporates the steps necessary to increase the resilience of an AI-based medical diagnostic system against various kinds of disruptive influences.MethodsPost-hoc resilience optimization, post-hoc predictive uncertainty calibration, uncertainty monitoring, and graceful degradation are incorporated as additional stages in MLOps. To optimize the resilience of the AI based medical diagnostic system, additional components in the form of adapters and meta-adapters are utilized. These components are fine-tuned during meta-training based on the results of adaptation to synthetic disturbances. Furthermore, an additional model is introduced for post-hoc calibration of predictive uncertainty. This model is trained using both in-distribution and out-of-distribution data to refine predictive confidence during the inference mode.ResultsThe structure of resilience-aware MLOps for medical diagnostic systems has been proposed. Experimentally confirmed increase of robustness and speed of adaptation for medical image recognition system during several intervals of the system’s life cycle due to the use of resilience optimization and uncertainty calibration stages. The experiments were performed on the DermaMNIST dataset, BloodMNIST and PathMNIST. ResNet-18 as a representative of convolutional networks and MedViT-T as a representative of visual transformers are considered. It is worth noting that transformers exhibited lower resilience than convolutional networks, although this observation may be attributed to potential imperfections in the architecture of adapters and meta-adapters.СonclusionThe main novelty of the suggested resilience-aware MLOps methodology and structure lie in the separating possibilities and activities on creating a basic model for normal operating conditions and ensuring its resilience and trustworthiness. This is significant for the medical applications as the developer of the basic model should devote more time to comprehending medical field and the diagnostic task at hand, rather than specializing in system resilience. Resilience optimization increases robustness to disturbances and speed of adaptation. Calibrated confidences ensure the recognition of a portion of unabsorbed disturbances to mitigate their impact, thereby enhancing trustworthiness.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3