Tweet Analysis for Enhancement of COVID-19 Epidemic Simulation: A Case Study in Japan

Author:

Tran Vu,Matsui Tomoko

Abstract

The COVID-19 pandemic, which began in December 2019, progressed in a complicated manner and thus caused problems worldwide. Seeking clues to the reasons for the complicated progression is necessary but challenging in the fight against the pandemic. We sought clues by investigating the relationship between reactions on social media and the COVID-19 epidemic in Japan. Twitter was selected as the social media platform for study because it has a large user base in Japan and because it quickly propagates short topic-focused messages (“tweets”). Analysis using Japanese Twitter data suggested that reactions on social media and the progression of the COVID-19 epidemic may have a close relationship. Analysis of the data for the past waves of COVID-19 in Japan revealed that the relevant reactions on Twitter and COVID-19 progression are related repetitive phenomena. We propose using observations of the reaction trend represented by tweet counts and the trend of COVID-19 epidemic progression in Japan and a deep neural network model to capture the relationship between social reactions and COVID-19 progression and to predict the future trend of COVID-19 progression. This trend prediction would then be used to set up a susceptible-exposed-infected-recovered model for simulating potential future COVID-19 cases. Experiments to evaluate the potential of using tweets to support the prediction of how an epidemic will progress demonstrated the value of using epidemic-related social media data. Our findings provide insights into the relationship between user reactions on social media, particularly Twitter, and epidemic progression, which can be used to fight pandemics.

Funder

Research Organization of Information and Systems

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MGLEP: Multimodal Graph Learning for Modeling Emerging Pandemics with Big Data;Scientific Reports;2024-07-16

2. Public Opinion Mining Using Large Language Models on COVID-19 Related Tweets;2023 15th International Conference on Knowledge and Systems Engineering (KSE);2023-10-18

3. Analysing sentiment change detection of Covid-19 tweets;Neural Computing and Applications;2023-05-31

4. COVID-19 case prediction using emotion trends via Twitter emoji analysis: A case study in Japan;Frontiers in Public Health;2023-03-14

5. Tracking Public Depression from Tweets on COVID-19 and Its Comparison with Pre-pandemic Time;2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS);2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3