Abstract
The health status and cognition of undergraduates, especially the scientific concept of healthcare, are particularly important for the overall development of society and themselves. The survey shows that there is a significant lack of knowledge about healthcare among undergraduates in medical college, even among medical undergraduates, not to mention non-medical undergraduates. Therefore, it is a good way to publicize healthcare lectures or electives for undergraduates in medical college, which can strengthen undergraduates' cognition of healthcare and strengthen the concept of healthcare. In addition, undergraduates' emotional and mental state in healthcare lectures or electives can be analyzed to determine whether undergraduates have hidden illnesses and how well they understand the healthcare content. In this study, at first, a mental state recognition method of undergraduates in medical college based on data mining technology is proposed. Then, the vision-based expression and posture are used for expanding the channels of emotion recognition, and a dual-channel emotion recognition model based on artificial intelligence (AI) during healthcare lectures or electives in a medical college is proposed. Finally, the simulation is driven by TensorFlow with respect to mental state recognition of undergraduates in medical college and emotion recognition. The simulation results show that the recognition accuracy of mental state recognition of undergraduates in a medical college is more than 92%, and the rejection rate and misrecognition rate are very low, and false match rate and false non-match rate of mental state recognition is significantly better than the other three benchmarks. The emotion recognition of the dual-channel emotion recognition method is over 96%, which effectively integrates the emotional information expressed by facial expressions and postures.
Subject
Public Health, Environmental and Occupational Health
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献