Applying Translational Science Approaches to Protect Workers Exposed to Nanomaterials

Author:

Schulte Paul A.,Guerin Rebecca J.,Cunningham Thomas R.,Hodson Laura,Murashov Vladimir,Rabin Borsika Adrienn

Abstract

Like nanotechnology, translational science is a relatively new and transdisciplinary field. Translational science in occupational safety and health (OSH) focuses on the process of taking scientific knowledge for the protection of workers from the lab to the field (i.e., the worksite/workplace) and back again. Translational science has been conceptualized as having multiple phases of research along a continuum, beyond scientific discovery (T0), to efficacy (T1), to effectiveness (T2), to dissemination and implementation (D&I) (T3), to outcomes and effectiveness research in populations (T4). The translational research process applied to occupational exposure to nanomaterials might involve similar phases. This builds on basic and efficacy research (T0 and T1) in the areas of toxicology, epidemiology, industrial hygiene, medicine and engineering. In T2, research and evidence syntheses and guidance and recommendations to protect workers may be developed and assessed for effectiveness. In T3, emphasis is needed on D&I research to explore the multilevel barriers and facilitators to nanotechnology risk control information/research adoption, use, and sustainment in workplaces. D&I research for nanomaterial exposures should focus on assessing sources of information and evidence to be disseminated /implemented in complex and dynamic workplaces, how policy-makers and employers use this information in diverse contexts to protect workers, how stakeholders inform these critical processes, and what barriers impede and facilitate multilevel decision-making for the protection of nanotechnology workers. The T4 phase focuses on how effective efforts to prevent occupational exposure to nanomaterials along the research continuum contribute to large-scale impact in terms of worker safety, health and wellbeing (T4). Stakeholder input and engagement is critical to all stages of the translational research process. This paper will provide: (1) an illustration of the translational research continuum for occupational exposure to nanomaterials; and (2) a discussion of opportunities for applying D&I science to increase the effectiveness, uptake, integration, sustainability, and impact of interventions to protect the health and wellbeing of workers in the nanotechnology field.

Funder

National Institute for Occupational Safety and Health

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3