Association between environmental chemicals co-exposure and peripheral blood immune-inflammatory indicators

Author:

Liu Yong,Zhang Zhihui,Han Dongran,Zhao Yiding,Yan Xiaoning,Cui Shengnan

Abstract

Chronic inflammation is closely related to chronic inflammatory diseases, autoimmune diseases and cancer. Few studies have evaluated the effects of exposure to multiple chemical combinations on immunoinflammatory related indicators and their possible molecular mechanisms. This study explored the effect of exposure to various chemicals on immune-inflammatory biomarkers and its molecular mechanism. Using data from 1,723 participants in the National Health and Nutrition Examination Survey (NHANES, 2011–2012), the aim was to determine the association between chemical mixtures and immunoinflammatory biomarkers [including White blood cell (Wbc), neutrophil (Neu), lymphocytes (Lym), and Neutrophil-to-lymphocyte ratio (NLR)] using linear regression model, weighted quantile sum regression (WQSR) model, and bayesian nuclear machine regression (BKMR) model. Meanwhile, functional enrichment analysis and protein–protein interaction network establishment were performed to explore the molecular mechanism of inflammation induced by high-weight chemicals. In the linear regression model established for each single chemical, the four immunoinflammatory biomarkers were positively correlated with polycyclic aromatic hydrocarbons (PAHs), negatively correlated with perfluoroalkyl substances (PFASs), and positively or negatively correlated with metallic and non-metallic elements. WQSR model showed that cadmium (Cd), perfluorooctane sulfonic acid (PFOS) and perfluorodecanoic acid (PFDE) had the highest weights. In BKMR analysis, the overall effect of chemical mixtures was significantly associated with Lym and showed an increasing trend. The hub genes in high-weight chemicals inflammation-related genes were interleukin-6 (IL6), tumor necrosis factor (TNF), and interleukin-1B (IL1B), etc. They were mainly enriched in inflammatory response, Cytokine-cytokine receptor interaction, Th17 cell differentiation and IL-17 signaling pathway. The above results show that exposure to environmental chemical cocktails primarily promotes an increase in Lym across the immune-inflammatory spectrum. The mechanism leading to the inflammatory response may be related to the activation of IL-6 amplifier by the co-exposure of environmental chemicals.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3