Author:
Zhang Ying,Zhang Shaobo,Xin Jinyuan,Wang Shigong,He Xiaonan,Zheng Canjun,Li Shihong
Abstract
IntroductionIn recent years, air pollution caused by co-occurring PM2.5 and O3, named combined air pollution (CAP), has been observed in Beijing, China, although the health effects of CAP on population mortality are unclear.MethodsWe employed Poisson generalized additive models (GAMs) to evaluate the individual and joint effects of PM2.5 and O3 on mortality (nonaccidental, respiratory, and cardiovascular mortality) in Beijing, China, during the whole period (2014–2016) and the CAP period. Adverse health effects were assessed for percentage increases (%) in the three mortality categories with each 10-μg/m3 increase in PM2.5 and O3. The cumulative risk index (CRI) was adopted as a novel approach to quantify the joint effects.ResultsThe results suggested that both PM2.5 and O3 exhibited the greatest individual effects on the three mortality categories with cumulative lag day 01. Increases in the nonaccidental, cardiovascular, and respiratory mortality categories were 0.32%, 0.36%, and 0.43% for PM2.5 (lag day 01) and 0.22%, 0.37%, and 0.25% for O3 (lag day 01), respectively. There were remarkably synergistic interactions between PM2.5 and O3 on the three mortality categories. The study showed that the combined effects of PM2.5 and O3 on nonaccidental, cardiovascular, and respiratory mortality were 0.34%, 0.43%, and 0.46%, respectively, during the whole period and 0.58%, 0.79%, and 0.75%, respectively, during the CAP period. Our findings suggest that combined exposure to PM2.5 and O3, particularly during CAP periods, could further exacerbate their single-pollutant health risks.ConclusionThese findings provide essential scientific evidence for the possible creation and implementation of environmental protection strategies by policymakers.
Funder
China Postdoctoral Science Foundation
Subject
Public Health, Environmental and Occupational Health
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献