Family shapes microbiome differences in Oklahoma salamanders

Author:

Kirsch Madelyn R.,Smith Sierra N.,Becker Daniel J.,Watters Jessa L.,Marske Katharine A.,Siler Cameron D.,Lanier Hayley C.

Abstract

IntroductionGiven the role of microbiomes in promoting host health and homeostasis, understanding the factors shaping skin microbial communities in wild vertebrates has become increasingly important in conservation. This goal is even more pressing for amphibians, for which the skin has multiple critical functions, and pathogens currently decimating populations are linked to significant changes in skin microbiomes. However, because microbiomes are also shaped by environmental and ecological influences, as well as by host phylogeny, it is important to quantify these contributions to microbiome structure in the presence of infection.MethodsTo understand the joint influence of these diverse factors shaping microbiomes, we used 16S rRNA sequencing to characterize the skin microbial communities of six salamander species (families Plethodontidae and Salamandridae) found in Oklahoma and contrasted the effects of infection status, phylogeny, host ecology, and host environment (i.e., climate) on skin microbiomes.ResultsDifferences at the level of host family were the main factor influencing microbiome diversity; however, we did not detect a substantial phylogenetic signal. Instead, host ecology and environment were more important in driving microbiome differences among species and genera. Salamanders that tested positive for the skin fungal parasite Batrachochytrium dendrobatidis (Bd) also had slightly less diverse microbiomes than Bd-free animals, but no such differences were associated with the systemic pathogen ranavirus (RV).DiscussionTogether, these results indicate a nuanced relationship between the number and type of microbes present on salamander skin and the factors influencing them. By developing a baseline assessment of the microbiome diversity and richness present on the skin of these focal species, this work also provides a foundation for monitoring and evaluating changes in skin microbiomes as populations continue to experience stressors and diseases.

Funder

Oklahoma Department of Wildlife Conservation

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3