Strategies for Efficient Gene Editing in Protoplasts of Solanum tuberosum Theme: Determining gRNA Efficiency Design by Utilizing Protoplast (Research)

Author:

Carlsen Frida Meijer,Johansen Ida Elisabeth,Yang Zhang,Liu Ying,Westberg Ida Nøhr,Kieu Nam Phuong,Jørgensen Bodil,Lenman Marit,Andreasson Erik,Nielsen Kåre Lehmann,Blennow Andreas,Petersen Bent Larsen

Abstract

Potato (Solanum tuberosum) is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the glucan water dikinase (GWD)1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.3–2.8 higher SNP prevalence when compared to the heterozygous diploid RH genome sequence as expected for a tetraploid compared to a diploid. This complicates guide RNA (gRNA) and diagnostic PCR designs. High editing efficiencies at the cell pool (protoplast) level are pivotal for achieving full allelic knock-out in tetraploids and for reducing the downstream cumbersome and delicate ex-plant regeneration. Here, CRISPR/Cas ribonucleoprotein particles (RNP) were delivered transiently to protoplasts by polyethylene glycol (PEG) mediated transformation. For each of GWD1 and DMR6-1, 6–10 gRNAs were designed to target regions comprising the 5′ and the 3′ end of the two genes. Similar to other studies including several organisms, editing efficiency of the individual RNPs/gRNAs varied significantly, and some generated specific indel patterns. While RNPs targeting the 5′ end of GWD1 yielded significantly higher editing when compared to targeting the 3′ end, editing efficiencies in the 5′ and 3′ end of DMR6-1 appeared to be somewhat similar. Simultaneous targeting of either the 5′ or the 3′ end with two RNPs (multiplexing) yielded a clear positive synergistic effect on the total editing when targeting the 3′ end of the GWD1 gene only. Multiplexing of the two genes, residing on different chromosomes, yielded no or slightly negative effects on the individual RNP/gRNA editing efficiencies when compared to editing efficiencies obtained in the single RNP/gRNA transformations. These initial findings may instigate larger studies needed for facilitating and optimizing precision breeding in plants.

Funder

TeknolOgi og Produktion, Det Frie Forskningsråd

Natur Og Univers, Det Frie Forskningsråd

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3