Automatic speech recognition and the transcription of indistinct forensic audio: how do the new generation of systems fare?

Author:

Loakes Debbie

Abstract

This study provides an update on an earlier study in the “Capturing Talk” research topic, which aimed to demonstrate how automatic speech recognition (ASR) systems work with indistinct forensic-like audio, in comparison with good-quality audio. Since that time, there has been rapid technological advancement, with newer systems having access to extremely large language models and having their performance proclaimed as being human-like in accuracy. This study compares various ASR systems, including OpenAI’s Whisper, to continue to test how well automatic speaker recognition works with forensic-like audio. The results show that the transcription of a good-quality audio file is at ceiling for some systems, with no errors. For the poor-quality (forensic-like) audio, Whisper was the best performing system but had only 50% of the entire speech material correct. The results for the poor-quality audio were also generally variable across the systems, with differences depending on whether a .wav or .mp3 file was used and differences between earlier and later versions of the same system. Additionally, and against expectations, Whisper showed a drop in performance over a 2-month period. While more material was transcribed in the later attempt, more was also incorrect. This study concludes that forensic-like audio is not suitable for automatic analysis.

Funder

University of Melbourne

Publisher

Frontiers Media SA

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3