Artificial intelligence for health message generation: an empirical study using a large language model (LLM) and prompt engineering

Author:

Lim Sue,Schmälzle Ralf

Abstract

IntroductionThis study introduces and examines the potential of an AI system to generate health awareness messages. The topic of folic acid, a vitamin that is critical during pregnancy, served as a test case.MethodWe used prompt engineering to generate awareness messages about folic acid and compared them to the most retweeted human-generated messages via human evaluation with an university sample and another sample comprising of young adult women. We also conducted computational text analysis to examine the similarities between the AI-generated messages and human generated tweets in terms of content and semantic structure.ResultsThe results showed that AI-generated messages ranked higher in message quality and clarity across both samples. The computational analyses revealed that the AI generated messages were on par with human-generated ones in terms of sentiment, reading ease, and semantic content.DiscussionOverall, these results demonstrate the potential of large language models for message generation. Theoretical, practical, and ethical implications are discussed.

Publisher

Frontiers Media SA

Subject

Social Sciences (miscellaneous),Communication

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Language Models in Biomedical and Health Informatics: A Review with Bibliometric Analysis;Journal of Healthcare Informatics Research;2024-09-14

2. Prompt Engineering Paradigms for Medical Applications: Scoping Review;Journal of Medical Internet Research;2024-09-10

3. What you see, What you get? Mapping Inconsistencies of Sustainability Judgements among Experts and Consumers;Proceedings of the 2024 International Conference on Information Technology for Social Good;2024-09-04

4. The Use of Artificial Intelligence in Health Communication;Advances in Medical Technologies and Clinical Practice;2024-07-19

5. Adversarial attacks and defenses for large language models (LLMs): methods, frameworks & challenges;International Journal of Multimedia Information Retrieval;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3