Paillier Cryptosystem Based ChainNode for Secure Electronic Voting

Author:

Umar Buhari Ugbede,Olaniyi Olayemi Mikail,Olajide Daniel Oluwaseun,Dogo Eustace Manayi

Abstract

Blockchain is a distributed and decentralized ledger of transactions that are linked together cryptographically leading to immutability and tamper-resistance, thereby ensuring the integrity of data. Due to the ability of blockchain to guarantee the integrity of data, it has found wide-range adoption in electronic voting (e-voting) systems in recent years, this is in a bid to prevent manipulation of votes. However, due to the distributed nature of the blockchain, opportunities arise for privacy intrusion of the data being secured. The translation of this privacy flaw in blockchain to e-voting systems is the possibility of violation of the privacy of the electorates. Consequently, in a bid to achieve integrity and privacy of votes in e-voting, this study presents the use of an open-source blockchain system, coupled with a privacy-oriented cryptosystem known as the Paillier cryptosystem, towards addressing the privacy concerns of the blockchain. The performance of the system was evaluated and a transaction throughput of 1424 tps was obtained for ten thousand simulated ballot transactions. Further evaluation was carried out on the system, by increasing the number of system transactions. This showed that the mining time of the blockchain increased by an average factor of 0.18 s for every thousand increases in the number of transactions. Also, the response time of the system to a range of user actions was evaluated over an increasing number of voters. Results obtained showed that the response time of the system for vote casting operations increased by an average of 0.33 min per thousand voters while for vote tallying there was an increase in response time by an average of 0.848 min per thousand voters. The scientific value of this study is the development of an integrity and privacy-preserving e-voting system consisting of an open-source nodechain coupled with a privacy-oriented cryptosystem known as the Paillier cryptosystem following the security requirements of e-voting systems. The proposed system addresses the issue of integrity in e-voting while still maintaining the privacy of the electorates.

Publisher

Frontiers Media SA

Subject

Automotive Engineering

Reference75 articles.

1. Risks and Opportunities of Blockchain Based on E-Voting Systems;Abuidris,2019

2. Multi-criteria Evaluation + Positional Ranking Approach for Candidate Selection in E-Voting;Alguliyev;Decis. Mak. Appl. Manag. Eng.,2019

3. Enhanced E-Voting Protocol Based on Public Key Cryptography;Almimi,2019

4. Blockchain-Based Secured E-Voting System to Remove the Opacity and Ensure the Clarity of Election of Developing Countries;Arnob;Int. Res. J. Eng. Technol.,2020

5. Blockchain-Based Secured E- Voting System to Remove the Opacity and Ensure the Clarity of Election of Deve;Arnob;Int. Res. J. Eng. Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3